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Received 13 July 1990 

Abstract. A q-analogue of Bargmann space is defined, using the properties of coherent 
states associated with a pair of q-deformed bosons. The space consists of a class of entire 
functions of a complex variable i, and has a reproducing kernel. On this space, the q-boson 
creation and annihilation operators are represented as multiplication by I and q-differenti- 
ation with respect to 2, respectively. A q-integral analogue of Bargmann’s scalar product 
is defined, involving the q-exponential as a weight function. Associated with this is a 
completeness relation for the q-coherent states. 

1. Introduction 

The representation theory of certain one-parameter (9.) deformations of the universal 
enveloping algebras of simple Lie algebras is currently of great interest in the study 
of conformal field theories [l], the classification of links [2], integrable lattice systems 
in statistical mechanics [2,3] and quantum inverse scattering [ 4 ] .  These ‘quantized’ 
universal enveloping (QUE) algebras, sometimes loosely called ‘quantum groups’, have 
many remarkable properties [5], and it seems likely that they will have a role to play 
in the development of other areas of physics. Indeed, it has already been indicated 
[6] that U,[su(l, I)], the QUE-algebra associated with the simple Lie algebra su(1, I), 
may underly a generalization of string theory; and the question arises as to whether 
there may exist a q-deformation of quantum field theory. While not pursuing that 
particular question, several authors [7-101 have already described a q-deformed version 
of the Bose commutation relations. 

Thus q-boson creation and annihilation operators 6, bi,  i = 1,2 , .  . . , r, have been 
introduced, together with corresponding number operators N,, satisfying the usual 
boson relations 

- 
[ bj, N,] = Sgbj [G. ,  43 = -Sgbj [b , ,  b j ] = O = [ 6 . , & . ]  (1) 

but also 

[ b j ,  b;] = O  i#j 

6 b j  = [ N;] b& = [ N, + I] 
in place of the corresponding boson relations. In (2), I is the identity operator on the 
Hilbert space where the creation and annihilation operators act and, for example, 
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where q is a complex parameter. Because [ N I +  N and [ N +  I ] +  N +  I as q +  1, the 
usual boson relations are recovered in this limit. Note that (2) implies 

(4) 
In what follows we shall concentrate on 0 < q < 1; the range 1 < q < m then corresponds 
to the replacement q c) q-' throughout. It follows in particular that we are not concerned 
with the so-called singular values of q, where q K  = 1 for some non-zero integer K.  

Just as the boson calculus can he utilized in the representation theory of simple 
Lie algebras such as su(m) [ l l ] ,  so q-bosons can be used to construct representations 
of U,[(su(m)] [8, 91. Furthermore, q-coherent states can be constructed [8] as eigenvec- 
tors of the annihilation operators b;. In the usual boson case, it is known that the 
coherent states provide the means to go from an abstract formalism to Bargmann's 
realization [12], where the Hilbert space is a reproducing-kernel Hilbert space of entire 
functions, the creation operators are simply multiplication operators in complex vari- 
ables zi, and the annihilation operators are differential operators ajari. Basis vectors 
for representations of su( m) in such a realization are simply polynomials in the complex 
variables zi. 

It should be possible to proceed similarly in the q-boson case, and construct an 
analogue of Bargmann's realization; indeed, such an analogue has partially been 
described already [ 10,131. There the creation and annihilation operators act as multipli- 
cation operators and q-differential operators, respectively, and basis vectors for 
U,[su(m)] appear as polynomials. Such q-differential operators, together with corre- 
sponding q-integration rules, have been discussed earlier [6,14]. 

However, there are some questions that have not been addressed. In particular, no 
analogue has yet been found of Bargmann's scalar product, which is associated with 
a completeness relation for the usual coherent states, and which involves the weight 
function exp(-X;=l lzi12). That is the main object of the present work. We shall see 
that the new scalar product and completeness relation involve the q-exponential 
[8, 10, 141 in place of the usual one, and q-integration in (partial) place of Riemann 
integration. Because the q-exponential has very different behaviour from the usual 
exponential function, the definition of the scalar product and completeness relation 
are by no means obvious. 

A J Bracken et a1 

- 
bibi - q-'b;b, = qNi bik. - q6bi = q-". 

2. Bosons, coherent states and Bargmano space 

We consider the case that there is just one pair of Hermitian conjugate creation and 
annihilation operators; the extension to r >  1 pairs is straightforward. For ordinary 
bosons a, 6 satisfying [a ,  d]  = I, the corresponding number operator is defined by 
N = da, and has normalized eigenvectors In) for eigenvalues n = 0, 1,2. . . . 

Coherent states Iz) are defined as eigenvectors of the annihilation operator a :  

These normalizable vectors are defined for all z E @, and satisfy (zlw) = exp(z*w). They 
are overcomplete, and satisfy in particular the completeness relation 

where the integral is taken over the entire complex plane, with d2z = dx dy, 
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The mapping to the Bargmann realization is now obtained by identifying each 
vector I+) in Hilbert space with an entire function + ( z )  defined by 

In this realization, the scalar product (@I#) takes the form 

as can be seen with the help of (6). If an entire function + represents a vector I+) as 
in (7) then 

where A 2 0  is a constant, which can in fact be taken equal to Conversely, 
if q5 is an entire function satisfying (9), then there exists a vector 14) in Hilbert space 
to which Q, corresponds. Thus, if the power series expansion of + is 

m 

+ ( z ) =  x CJ" (10) 
n=o 

then 

Note in this connection that conditions (9) imply, and are in fact equivalent to, the 
condition 

m 

n!)c,)Z<m. (12) 
"=a  

In this way, the Hilbert space is represented by the Bargmann space of entire 
functions + satisfying (91, with scalar product (8). The creation operator is represented 
by the multiplicative operator z in this realization, and the annihilation operator by 
differentiation with respect to z. The number state In) is represented by the monomial 
+.(z )  = z"/d%, and the coherent state Iw) by the function +Jz) =exp(wz). If 4 and 
$ are two functions in the Bargmann space, with power series expansions as in (IO), 
and expansion coefficients e,,, d. respectively, then (8) implies that 

m 

(+,$)= n!czdn. (13) 

In particular it is true that (&, +") = 6,"; this is most easily checked directly by 
changing the variable of integration in (8) to polar form L = r exp(i8), so that 

,,=a 

Note that since a is Hermitian conjugate to d, then d/dz (=exp(-iO)J/Jr) must be 
Hermitian cojugate to z (=exp(ie)r) with respect to the scalar product (8). From (14) 
we see that this is guaranteed by the result lam xk e-x dx = k! . (15) 

This observation will be relevant when we come to construct a q-analogue of (8). 
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The Bargmann space has K(wlz)=exp(w*z) as a reproducing kernel. Thus 

1 e"" @(z)  ( K (  w I . ), +( . )) = d2z = @( w )  (16)  

which can be deduced by expanding 4 as in (10)  and integrating term by term. 

3. The q-analogues of bosons, coherent states and Bargmann space 

The creation and annihilation operators a', a can be deformed to a Hermitian conjugate 
pair of operators 6, b satisfying, as  a particular case of ( 1 )  and (2), 

s b = [ N ]  bb=  [ N +  I ]  [ b , N ] = b  [ & N I = - &  (17)  
It is possible to assume that 6, b act in the same space as a', a, and indeed that N(=a'a)  
is the same operator as before, with the same eigenvectors In). Then it follows from 
(17), to within unimportant choices of phases, that 

bln) - 1) b l n ) = m l n +  1 ) .  (18) 
Comparing these with the well known actions of a and a' on In), we see that 

J[N+Il b= a' J[N+Il b =  JN+I a JN+I 
which shows explicitly the form of the deformation. Note that as q + 1 ,  then b + a and - 
b+a'. 

operator b :  
The q-coherent states are 

blz; q ) =  212; 4 )  

[ n ] ! = [ n ] [ n  - 1 3  

now defined [8] as eigenvectors of the annihilation 

. . [21[11 [0]!=1. 

These vectors are normalizable for all complex z and satisfy 

( z ;  qlw; q ) =  E(z*w; 4 )  (21) 

where E ( u ;  q ) = X ; = , ,  u " / [ n ] !  is the q-exponential [8,10,14], which we shall write as 
E ( u ) ,  treating q as an implicit parameter. The function E can be seen to be entire 
since [ n l s n  for q > O ,  so that [ n ] ! * n !  and IE(u)lGexp(lul). 

We can now map each vector 14) in the Hilbert space into an entire function 4 by 
defining, in place of (7), 

Each such entire function +(z) =I:=, c.2" satisfies 
m 

[nI!lc.12<00. (23) 
" S O  

Conversely, any entire function 4 whose expansion coefficients c,, satisfy (23). corre- 
sponds to a vector given by 
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The vector space of all such functions can be made into a Hilbert space by defining 
the scalar product of any two functions 4, $ with expansion coefficients c,, d. as 

(25) 
n = o  

so that (+, $1 =(@I$). (Completeness of the space follows as in the usual case.) 
In this way, we set up a q-analogue of Bargmann space. We can see already from 

( 2 5 )  that there is a reproducing kernel for the new space, given by K ( w l z ;  q )  = E ( w * z ) ,  
Note, however, that to this stage we have no analogue of the integral form (8) of the 
scalar product; this is associated with the fact that we have not yet given an analogue 
of the completeness relation (6). The forms of such analogues are strongly related to 
the realizations of the annihilation and creation operators b, 6, since these operators 
must be conjugate to each other with respect to the new scalar product. 

4. Realization of q-bosons and the q-calculus 

According to (22), the function corresponding to the vector 614) is 

(z*; q161@)= z(z*; ql4)= z4(z). (26) 
i t  foiiows that 6 is represented By the muitipiicative operator z. i o  determine the 
representative of b, we note first that 

z(z*; qlbl4)=(z*; qlFbl+)=(z*; qI[NlI4). (27) 
Since In) is represented by z " / m ,  and N l n ) = n l n )  for n=O, 1 , 2 .  . .  , then N is 
represented by the operator z d/dz. Therefore 

(2"; 91qN14)=4(9z) ( z * ;  q1q-"I4)= + ( q - ' z )  (28) 
and (27) implies 

Thus b is represented by the q-differential operator d!dfz; a) ;  which acts on functions 
442) as 

For entire functions +, we note that the q-derivative approaches d+/dz  as 9 +  1, and 
also that, if z =  r exp(i@), then d/d(z; q )  =exp(-i@)d/d(r; 4). 

The q-differential (or q-difference) operator has been discussed previously, together 
with a corresponding q-integration (or q-summation) operator defined by [6, 13,141 

f (z )d(z ;  q ) = ( q - ' - q )  q2"+'zf(qZ"+'z)+C O < q < l  ( 3 1 )  

where C is an arbitrary constantt. For entire functions f ( z ) ,  it is easily seen that this 
q-integral approaches the Riemann integral as q +  1, and also that the operators of 

m I n=o 

?The most general function F ( z )  with q-derivative 0 is actually of the form F ( r )  =g(ln z) where g is an 
elliptic function with periods 2ni and 2 In q. but unless g is constant, then F has an essential singularity at 
1 =O. so that (31) gives the correct formula if we demand that F has at worst a pole at z = 0. 



1384 

q-differentiation and q-integration are inverse to each other: 

A J Bracken ef al 

Some of the useful properties of q-differentiation, analogous to those of ordinary 

Sum rule: 

differentiation, are: 

Product rule: 

Chain rule (special cases): 

Another useful result is 

Corresponding results for q-integration are: 

J f ( z " )  d(z"; q') =[n] z " - ' f ( z " )  d(z; q )  J (35) 

I 1 "-1 
f ( z )  d(z; q ) = -  1 q2*-"-" f (q"- '" -"z)  d(z; q'),  [ n l  k=O 

In particular we see that dz"/d(r;  q )  = [n ] z"- ' ,  so that 

consistent with the action of b on In) and Iw; q). 

5. The q-analogue of the scalar product 

By analogy with the usual case, one might guess that the analogue of (8) is 

(37) 1 2.7 (+,+)='["[I 4(re'')*+(re'')dB rE(-r')d(r; q). 
n o  0 
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However, this is inappropriate because the improper q-integral does not converge. The 
problem lies in the behaviour of E ( x )  as x-) -m: whereas exp(x) decays to 0 in that 
limit, the sign of E ( x )  alternates, and IE(x)l actually grows quickly, so that E ( x )  can 
be made arbitrarily large positive or negative by choosing a suitable large negative 
argument. (See figures 1 and 2.) The resolution of the difficulty will ultimately derive 
from the fact that E ( x )  does alternate in si n as x +  m, and it involves choosing a 

in (37), such that r, + m as n + -m; this resultant sequence of q-integrals converges; 
and positive definiteness of the scalar product is guaranteed. I t  can be shown that this 
sequence of upper limits, which is intimately related to the structure of the q-exponen- 
tial, is uniquely determined. 

special sequence of upper limits r, = J- q / (1  q ), n 1 -1, -2,. . . , of the q-integral 

As demonstrated in the appendix, if 0 < q < 1, n E Z, 

I 
Figure 1. Graph of E ( - x )  for q = O . S  

Figure 1. Graph of log(€(-x)(/log 2 showing the rate of growth. The crosses indicate the 
special points at which the q-integral is evaluated in (41). 
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so that 
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Then 

We now argue that the q-analogue of j:f(x) exp(-x) dx  is 
P ""iil-"~, 

as n +  -00. (39) 

as n + -00. 

(41) 

where f (x )  grows slowly enough that the limit is defined. (In particular, polynomial 
growth is allowed.) It is important to note from (31) that the only values of E(-x) 
involved in the evaluation of (41) are those obtained at x =  q k / ( 1 - q 2 ) ,  for k =  n + l ,  
n + 2 , .  . . , where E(-x) is positive, as seen from (38). 

Using q-integration by parts, we find that 

xkE(-x) d(x; q )  

The first term on the right-hand side goes to zero as n + -CO, as can be seen from (39). 
(The rapid decay of IE(-q"/(l -q2))1 with decreasing n =0, -1, -2.. . is indicated 
in figure 2.) Therefore 

xk-'E(-x) d(x; 9). (43 ) 
lim /nq"/(l-rf? 

xkE(-x) d(x;  q )  = [ k ]  lim 
n--m n--m 

A simple proof by induction then shows that 

x'€(-x) d(x; q ) = [ k ] !  (44) 
n--m 

which is the q-analogue of (15). 
We are now in a position to describe a q-analogue of the scalar product (8). 

Consider again two entire functions 6, $ with power series expansions whose 
coefficients c., d, satisfy (23); their scalar product is given by (25). First we note that 
the integral 2k ( ( r  e")')*(* e")'d0 is equal to , so that 

m 
$ ( r  e'')*+(r e") d0 = cf dXr2'. (45) 

k = n  
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Also, 

so that 

Then it follows that 

The interchange of the q-integration and the sum over k in this step is justified because 
the double sum is absolutely convergent. A suitable scalar product of two entire 
functions 4 and tJ in the q-analogue of Bargmann space is therefore given by 

$( r  e'")*tJ(reie) d0 rE(-r2)d(r;  q"2). (49) 1 [ 
This can also be written in the form 

[ lo2m 4 ( r  e")*$(r e'a) dB rE(-r2) d(r;  4 ) ) .  (50) 1 4 ' ~ , q " - ~ / ( * - q = , i  

In a similar way we can show that the q-analogue of the completeness relation 
( 6 )  i s  

This can also be written in a form corresponding to (50) 

6. Concluding remarks 

The q-analogue of Bargmann space shares many of the properties of Bargmann space 
itself, which is evidently recovered in the limit q +  1 .  We may expect that this space, 
and its generalization to r variables z , ,  z2. . . . , z,, will prove of value in the representa- 
tion theory of QUE-algebras, such as U,,[su(m, n ) ]  in particular, just as the Bargmann 
space has [I51 in the case of the Lie algebras su(m, n). Indeed, some advantages of 
the formalism are already clear from earlier studies [IO, 131. 
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We have given a completeness relation for the q-coherent states l z ;  g). They are 
evidently overcomplete, and an interesting problem is to find the analogue of von 
Neumann's result [16], that the ordinary coherent states l z )  are complete when restricted 
to a lattice in the z-plane, provided the lattice spacing is not too large. In this connection, 
the generalized undertainty relations associated with the q-bosons, as discussed by 
Biedenharn [8], are certain to play a role. 

One of the interesting features of QUE algebra theory is that the introduction of 
the variable q not only enriches structural properties but also throws new light on 
(and may even uncover) properties that already hold in the undeformed limit (g+ 1). 
Therefore we may also hope that the extension of the concept of Bargmann space in 
the way we have described, will lead to new insights into the properties of such spaces. 

Finally, we believe that the appearance of the q-derivative and q-integral in the 
setting of a reproducing-kernel Hilbert space of entire functions may have important 
implications for the study of q-analogues of special functions, and the subject of 
q-series analysis [I41 in general. 
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Appendix 

Suppose that 0 < g < 1, and let { b .  : n E Z} be a q-Fibonacci sequence satisfying the 
linear difference equation 

bn+,=bn+q"bn+~. (AI) 

Regarded as a real vector space, the set of such sequences is two-dimensional because 
the difference equation is second-order. Note that the half-sequence {b.  : n 3 0) is 
bounded. To see this, note first that Ibol, lbll < K ,  implies 

"-2 

I=1 
(b,l <2K1(1 +q)(1 + q 2 ) .  . . ( l+q"-2)  = 2K1 n ( l + q l )  

The proof is by induction on n. Then we have 

n 3 2 .  (A2) 

k - 2  m 

1-1 I = ,  
lbk1<2Kl n (1+q1)<2K,  n ( l + q ' ) = K 2  (say). 

Since the product Ilz, ( 1  + 4') converges, the sequence {bn : n 3 0} is bounded. 
Now, for k, I3 1, 

It follows that the sequences {b21:  1 3 0 )  and { b ~ + , :  1 3 0 )  are Cauchy, since if k , ,  
k 2 3  N and are of the same parity, then 
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If we let ck = E ( - q k / ( l -  q 2 ) ) ,  then it foIlows from property (36) of ~ ( u )  that {ck)  
is a q-Fibonacci sequence. Furthermore, limf-m cZ1 = liml+m G,,, = E(0)  = 1, so that 
the sequence { E ( - q k / ( 1 - q 2 ) ) :  ~ E Z }  is a q-Fibonacci sequence with equal limits. 

Now, suppose that K E Z and K > In( 1 - q2)/ln 9, and let E = q K / (  1 - q2) ,  so that 
0 < ~ < 1 .  Let Id.: n ~ Z 1  be a q-Fibonacci sequence such that d K = l , d K + , = - l .  By 
induction on 1, we can prove that 

1 3  dK+"> 1 - & ( I  -4'') -1 S dK+2ltl < -1+&q(1 -q2 ' ) .  (AS) 

This can be shown as follows: 

K t 2 1  d ~ + 2 1 + 2 = d ~ + 2 1 + 9  d~+21+1<dh+2iG 1 

~ K + ~ I + z = ~ K + ~ I + ~ ~ + " ~ K + ~ I + I >  1 - E ( 1  - 9 2 1 ) - E q 2 1 ( 1  -9') 

1 = 1 - & ( I  - q 2 ( ' + l '  

K+11+1 
d ~ + 2 1 + 3 = d ~ + z f + i + 9  d~+21+2> dh+xii a -1 

~ K + ~ I + ~ = ~ K + z I + I + ~  K+21+1 dK+21+Z<-1+&q(l-q21)-&q21+1(i  -9') 

= - i + - ~ q ( i - q ~ ( ~ + ' ) ) .  

From (AS) we have 

1 3  dKt21> 1 - -E  -1 S d K + 2 1 + ,  < - 1 + q  (A6) 

and l i m , + m d 2 K + f > l - ~ > 0 ,  l iml , ,d2K+l+,G-l+~q<0.  Then { d " :  ~ E Z ]  is a q- 
Fibonacci sequence with distinct limits. Because the space of q-Fibonacci sequences 
is two-dimensional, it now follows that if {b":  n EZ} is a q-Fibonacci sequence with 
equal limits a, then b. = a E ( - q " / ( l - q 2 ) ) .  

Let 

Then {a. : n E Z] is a q-Fibonacci sequence, a. > 0 for all n E Z, and limJ-m a,, = 
1iml+ma21+, =A,  where 

Therefore 

These results for {a,,] can be seen as follows: Firstly, the series for a. converges by 
the Ratio Test: 
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since q4k + 0, 1 - q2' + 1. Secondly, {a,, : n E Z} is a q-Fibonacci sequence since 

A J Bracken ef al 

(n-2k+ l ) (n -2k)12  

21 
m 9  

( n - 2 k + l ) ( n - 1 k ) / 2  

k 
an+2-a" = q " ( " + ' ) f 2 +  1 " 4  

k - 1  nI=,( l -q")  -k?l n?z:(l-q ) 

and 

Since 

(which can be proved by induction on L ) ,  then 

where we have used the fact that if m a p ,  then q2p-2m/(1 - q 2 ) 2  1. Similarly, 
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Note that ,X:=-= 42"2-"/((1 -q2)II;Ci1 ( 1  - q 2 ' ) )  is finite since the product in the 
denominator converges, and the numerator converges by the Integral Test (using the 
integrability of Gaussian functions). Thus a,,+,+A, and (A9) follows. Then we 
have 
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